
A Secured Wireless XML Streaming Supporting
Twig Pattern Queries

K. Preethi1, S. Ganesh Kumar2

1MTech Student, 2Assistant Professor
Department of Computer Science and Engineering

SRM University, Kattankulathur, Tamil Nadu, India

Abstract— The migration to wireless network from wired
network has been a universal trend in recent days. Wireless
broadcasting is a mechanism for dispersing identical
information in the wireless mobile environment. In this paper,
we propose an XML broadcasting scheme. The wireless XML
data stream consists of sequence of integrated nodes, called G-
node. G-node is a unit structure which consists of node name,
location path, child index, attribute index, lineage code,
Attribute Value List and Text List. An encoding scheme,
called Lineage Encoding, is defined to represent the parent-
child relationships among XML elements as a sequence of bit-
strings, called Lineage Code (V, H). The components of G-
node are used to process twig pattern queries at mobile clients
efficiently. Twig pattern query involves element selections
satisfying complex patterns in tree-structured XML data.
Symmetric encryption technique is used for ensuring security
at mobile clients. By adopting these techniques mobile clients
can retrieve the required data satisfying the given twig pattern
query and security is provided so that one mobile client cannot
view other mobile clients information.

Keywords— Wireless Broadcast, XML Data Stream, Lineage
Encoding, Twig Pattern Query, Symmetric Encryption
Technique.

I. INTRODUCTION
 Increased use of laptop computers within the enterprise,
and increase in worker mobility has increased the demand
for wireless networks. The mobility, scalability and ease of
physical setup brought by wireless network have made it
possible in many applications when compared to wired
networks. With the rapid growth of this technology wireless
mobile computing has become more prominent. User
mobility and device portability are two main aspects of
mobile computing. With the rapidly expanding technology
of laptops and smart phones, users can communicate and
access information from anywhere and at any time.
Wireless broadcasting is an effective information
broadcasting method from a server to a pool of clients in
the wireless environment. We propose an energy efficient
wireless XML streaming scheme supporting twig pattern
queries in the wireless mobile environment. XML is used to
structure the data and also provide meaning for data. The
popularity of XML is increasing rapidly and more and more
information is being stored, exchanged and presented in
XML format. A sample XML document is given in Fig. 1.
 We define a novel unit structure called G-node for
streaming XML data in the wireless environment. We
define an encoding scheme, called Lineage Encoding, to

represent parent-child relationships among XML elements
and to support twig pattern queries. The components of G-
node enable mobile clients to download relevant data
during query processing. Efficient query processing over
XML data is more important. In this paper, we use XPath as
the query language. An XML twig pattern query,
represented as a small query tree, is essentially a complex
selection on the structure of an XML document. Symmetric
encryption technique is used for ensuring security at mobile
clients. In the client-side, if a query is issued by the mobile
client, the mobile client tunes in to the broadcast channel
and selectively downloads the relevant data.

<Studentinfo>
<student id =”1015511”>
<personalinfo id=”2015511”>
 <studname id=”3015511”personalinfo=”2015511”>
 <firstname id=”4015511”> preethi </firstname>
 <lastname id=”4015512”> k</lastname>
 </studname>
 <rollno id="3015512" personalinfo=”2015511”> 11</rollno>
 <email id=”3015513” personalinfo=”2015511”> preethi@gmail.com
 </email>
</personalinfo>
<result id=”2015512”>
 <subject1 id=”3015514” name=”maths” student=”1015511”
 result=”2015512”>
 <theorymark id=”4015513”>80</theorymark>
 <pracmark id=”4015514”>20</pracmark>
 </subject>
 <subject2 id=”3015515” name=”science” student=”1015511”
 result=”2015512”>
 <theorymark id=”4015515”>70</theorymark>
 <pracmark id=”4015516”>20</pracmark>
 </subject>
</result>
</Student>
</studentsinfo>

Fig. 1 A Sample XML Document

II. BACKGROUND

A. XML Data Model
XML documents have a hierarchical structure and can be
represented as a rooted, ordered, and labeled tree. These
XML trees (twigs) are available in two forms; they are
ordered and unordered XML trees. The present approach
considers an ordered and labeled XML tree. XML
document must contain a root element. This element is the
parent of all other elements. All elements in an XML
document can contain sub elements, text and attributes. The
tree represented by an XML document starts at the root

K. Preethi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2112-2116

www.ijcsit.com 2112

element and branches to the lowest level of elements. The
nodes of the XML tree represent elements and the edges
represent parent-child relationships among XML elements.
The XML tree representation for the sample XML
document is given in Fig. 2. In this paper, we use XPath [1]
as the query language. The XML query language namely
XPath represent the query as ordered labeled small trees
(twigs). A twig pattern query consists of two or more path
expressions and it represents complex search condition. For
example, twig pattern query written in XPath format and
the tree representation is given in Fig. 3.

Fig. 2 XML Tree Representation

Q1: //studentinfo/student [name/text () =”predicate”]/result

Fig. 3 Example twig pattern query and its tree representation

B. Twig Pattern Query
 A twig pattern query involves element selections
satisfying complex patterns in a tree-structured XML data.
It consists of two or more path expressions and it supports
all sorts of complex queries [2], [3], [4], [5]. Many
technique uses structure index which directly captures the
structural information of XML document is used for XML
query processing [8], [9]. This approach reduces the size of
XML data stream by integrating indexes of multiple
elements of the same path into one node. But they do not
preserve all parent-child relationship and cannot find the
exact output elements. The twig pattern query which uses
tree structures finds the exact output elements and supports
complex query patterns. The twig pattern query

decomposes the tree pattern into linear pattern which can be
binary (parent-child or ancestor-descendant) relationships
between pairs of nodes. Then it finds all matches of each
linear pattern and joins them to produce the result. Thus the
twig pattern query processes.

III. RELATED WORKS
A. Multipredicate Merge Join Algorithm
 Multipredicate merge join (MPMGJN) algorithm [5]
uses a merge join algorithm to provide higher cache
utilization and superior performance than a standard
RDBMS algorithm. The inverted list engine uses a merge
join (MPMGJN) as its join operator. This algorithm is
different from the standard merge join and the index nested-
loop join algorithms, and the difference has a significant
impact on performance. The MPMGJN algorithm out-
performs the standard RDBMS join algorithms by more
than an order of magnitude on containment queries.
Containment queries are a class of queries based on
containment relationships among elements, attributes, and
their contents. The merge join algorithm used in the
inverted list engine uses all join columns to guide merging
and thus it avoids some row comparisons done by the
standard merge join. But the standard merge join is only
one of the choices of an RDBMS. Two other algorithms
namely hash join and index nested-loop join can be used to
process a join. Since a hash join cannot be used for
inequality predicates, only the predicate on a particular field
can be used, and the inequality predicates must be applied
on each pair of rows just like the standard merge join.
Therefore, hash join has the same disadvantage. In index
nested- loop join, for each outer row, its values are used to
seek the index on the inner table, starting from the root of
the tree and reaching a record with the start key at the
bottom of the index. An index scan is then conducted across
the index records until one with a stop key is reached. Then
each record along the scan is attempted to be joined with
the outer row. The seeking and scanning are repeated for all
outer rows. Sometimes it appears that the standard index
nested-loop join does fewer comparisons than MPMGJN,
and therefore should perform better. But this is not always
true. In order to selectively examine inner rows, an index
must be used, and comparisons must be done on index
records. But experimental result shows that an index record
comparison almost always incurs a cache miss. A merge
join (MPMGJN) is essentially a form of nested-loop join,
except that seeking is not done on an index, but rather
directly on data records. For the same query on the same
data, record scans cost the same number of comparisons as
index scans, but the record seek costs are different from the
index seek costs. Therefore MPMGN outperforms well and
has better cache utilization.

B. Structural Joins
 Al-Khalifa et al. [2] proposed two families of structural
join algorithms for efficient XML query processing. For
this task, tree-merge and stack-tree algorithm was proposed
to find all occurrences of parent-child and ancestor-
descendant structural relationships in an XML database.
The tree merge algorithm is a natural extension of merge

K. Preethi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2112-2116

www.ijcsit.com 2113

join to deal with the multiple inequality condition that
characterizes the parent-child or ancestor-descendant
structural relationships based on the representation. But the
stack tree algorithm has no counterpart in traditional
relational join processing. Structural join algorithms are
more efficient than traditional join algorithms implemented
in relational databases for the same task The stack-tree
algorithm is I/O and CPU optimal and has worst case linear
I/O and CPU complexities for both parent-child and
ancestor-descendant structural relationships. The tree-
merge algorithm has worst case quadratic I/O and CPU
complexities but in some cases they have linear
complexities. Pointer based joins which are useful for query
processing is not addressed in this paper and many issues
are yet to be explored.

C. Holistic Twig Joins
 Nicolas et al. [6] proposed twig join algorithms namely
path stack and twig stack for matching XML twig pattern
query. PathStack algorithm decomposes the twig into
multiple root-to-leaf path patterns and identifies solutions to
each individual path. It then merge these solutions to
compute answers to the query. But using the PathStack is
suboptimal since many intermediate solutions do not
contribute to the final answer. The sub optimality problem
is overcome by the TwigStack. TwigStack reduces the
amount of the intermediate results and computational cost
for merging the intermediate results using a chain of linked
stacks that represent partial results to root-to-leaf query
path. When the twig pattern uses only ancestor-descendant
relationships between elements, TwigStack is I/O and CPU
optimal among all sequential algorithms. Therefore
TwigStack is I/O and CPU optimal for a large class of twig
pattern queries and practically efficient. But there is more to
efficient XML query processing than is within the scope of
this paper.

D. XML Twig Queries with OR-Predicates
 Previously proposed twig pattern matching algorithms
deal with only twig queries without OR-predicates. A novel
holistic-processing algorithm for twig queries with OR-
predicates is used. The twig pattern query is processed
without decomposing it. In general the existing algorithms
follows a straightforward approach that decomposes a twig
query with OR-predicates into multiple twig queries
without OR-predicates and then it combines their results is
obviously not optimal in most cases. In [7], Jiang et al. use
two algorithms, a merge-based algorithm for sorted XML
data and an index-based algorithm for indexed XML data,
to enhance performance for matching twig queries with the
OR-predicate. Holistic processing is much more efficient
than the decomposition approach. Furthermore, the use of
indexes skips elements during a join and significantly
improves the performance for matching twig queries with
OR/AND-predicates. But indexing method is so far not
efficient for twig pattern queries.

E. Integration of Structure Indexes and Inverted Lists
 Kaushik et al. [9] proposed an XML path query
processing algorithm integrating inverted lists and structure

indices. Structure indexes are used as a substitute for graph
traversal. These structure indexes are proven to be very
effective when applied to queries that examine the “coarse”
structure of documents. But the structure indexing approach
is much less successful when we consider queries on
“values” or text words in the documents. On the other hand,
while inverted lists have proven very effective for keyword
searches in the information retrieval community, when
applied to path expression queries over XML documents
they are less effective. The problem is that evaluating a path
may require many joins over large inverted lists, and these
joins can be expensive. This paper proposes a strategy that
combines structure indexes and inverted lists, and a query
evaluation algorithm for branching path expressions based
on this strategy. This technique reduces computation costs
omitting join operations. But this technique does not
support complex query languages and more complex
ranking functions. Beyond that, the problem of running
structured queries over hyper-linked XML documents needs
to be addressed.

IV. WIRELESS XML STREAMING
A. XML Stream Generation
 For providing energy efficient query processing in the
wireless and mobile environments, wireless XML stream
generation approach has been proposed. In this approach,
the XML data are streamed in the wireless environment by
the server. The XML document comprises of student
(client) details. Wireless XML stream is generated by using
SAX parser. SAX parser is a simple API for XML. This
approach has been proposed to reduce structural overheads
of the original XML document and indices containing
timing information are attached to the XML data stream.
These works enable mobile clients to download and view
their data from XML data stream. We define a novel unit
structure called G-node for streaming XML data in the
wireless environment. The G-node is the basic element of
the wireless XML stream. The G-node comprises of node
name, location path, lineage codes, child index, attribute
index, AVL, and TL. Node name is the tag name of the
elements, and location path is the path of the element from
the root node. Child Index contains child names and
addresses that point to the starting position of child G-nodes
in the wireless XML stream. Attribute Index contains
attribute names and addresses that point to the starting
position of the values of the attribute that are stored in
Attribute Value List. Text Index is an address pointing to
the starting position of Text List. Attribute Value List
(AVL) and Text List (TL) store attribute values and text
contents of the element. In our scheme, we exploit the
benefits of the Attribute Summarization technique [10] to
reduce the size of a wireless XML stream. In XML, an
element may have multiple attributes, each of which
consists of a name and value pair. In addition, there is a
structural characteristic that elements with the same tag
name and location path often contain the attributes of the
same name. Attribute Summarization technique eliminates
repetitive attribute names in a set of elements when
generating a stream of G-nodes. The components of G-node
are used to efficiently process queries in the mobile clients.

K. Preethi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2112-2116

www.ijcsit.com 2114

 Symmetric encryption technique (AES) is used to
encrypt the attribute values and text contents of each
element excluding name and roll number element in the
XML document. Advanced Encryption Standard (AES)
algorithm is used to ensure security in the mobile clients.
The risks to users of wireless technology have increased as
the service has become more popular. Despite the
convenience and advantage that wireless network offers, the
network can be hacked. Denial of Service, Spoofing, and
Eavesdropping are some of the important threats. To
overcome from these threats, and to ensure privacy and
security in the mobile clients, encryption technique has
been proposed. The attribute values and text contents of
each student element are encrypted using symmetric
encryption technique by the server and stored in AVL and
TL. The decryption key of each (student) client is intimated
to the mobile clients. The Symmetric encryption technique
prevents unauthorized clients from viewing the data.

B. Lineage Encoding
 In this paper, we propose an encoding scheme, called
Lineage Encoding, to support twig pattern queries. The
Lineage Encoding scheme represents the parent-child
relationships among XML elements in the XML document.
We propose two kinds of lineage codes, i.e., vertical code
denoted by Lineage Code (V) and horizontal code denoted
by Lineage Code (H). Lineage code (V) and Lineage code
(H) represents the parent-child relationships among XML
elements as a sequence of bit-strings. Assume that a G-node
N is a child of G-node M. If the elements in ݊ܧ of G-node
N maps to the elements in ݉ܧ of G-node M, then the
Lineage Code of G-node N is defined by LC (V, H), where
LC (V) is a bit string and LC (H) is an ordered list of
positive integers. Lineage code (V) will be set to 1 if the
elements in ݉ܧ has at least one child element in	݊ܧ else it
will be set to 0. Each positive integer in Lineage code (H)
denotes the number of child elements in ݊ܧ	mapped to the
same parent element in	݉ܧ. Thus, the proposed Lineage
Code scheme is a light weight scheme which represents
parent-child relationships between elements in the XML
document.

V. TWIG PATTERN QUERY PROCESSING
 The ability to efficiently retrieve required data from
XML data sources is more important. Matching twig
queries is a core operation in XML query processing. Twig
pattern query processing consists of three phases namely
tree traversal phase, sub path traversal phase, and main path
traversal phase. While processing a twig pattern query with
predicates, we should select subset of elements satisfying
the given predicates. Then, for the selected elements, we
should find their parent elements or child elements. For
example, to process the query in Fig. 3,
Q1://studentinfo/student[name/text()=”predicate”]/result,
we should find a subset of “name” elements satisfying the
given predicate condition, select their parent “student”
elements, and then identify “result” elements which are
children of those “student” elements. A subset of the
elements selected in a G-node can be represented by a bit
string, called a selection bit string (SB) for the G-node,

where 1-value bits identify the selected elements. First, a
function to obtain a selection bit string identifying a subset
of elements in a particular child G-node is defined as
follows:

Function 1:
ܸ = ܵℎ݇ݏܽܯ&݇݊݅ݎ(ܸ, (݉ܤܵ
݊ܤܵ = (ܪ,ܸ)ܷ݇ܿܽ݊

 A selection bit string SBn	for child G-node N can be
computed based on the Lineage Code of N, (V, H), using
Shrink&Mask and Unpack operators in order.
Shrink&Mask(V, SBm), where V denotes LC (V) of child
G-node and elements in M with one or more child elements
in N are selected by	SBm. Shrink&Mask operator computes Vp by shrinking 0’s in LC (V) and then it shrinks SBm by
eliminating the bits in same position as those removed in	V.
Unpack(Vp, H), where Vp is the shrunken bit string
computed by Shrink&Mask operator and H denotes LC (H)
of child G-node. Unpack operator extends Vp based on H to
obtain the result selection bit string for the G-node N. Thus
a subset of elements in a particular child G-node is selected.
Second, a function to identify the parent elements of a
subset of elements selected in a G-node is defined as
follows:

Function 2:
ܸ = (ܪ,݊ܤܵ)݇ܿܽܲ
݉ܤܵ = ,ܸ)݇ݏܽܯ&݀݊ܽݔܧ (ܸ

 To identify the parent elements of a subset of elements
selected in a G-node, Pack and Expand&Mask operators are
used. Pack(ܵܪ,݊ܤ) operator computes ܸ by shrinking the
bit string ܵ݊ܤ based on	ܸ .ܪ denotes the elements in the
parent G-node of N which are parents of the elements in N
selected by	ܵ݊ܤ. Expand&Mask (ܸ, and masks ܸ with it to obtain the result selection bit ܸ operator expands (ܸ
string ܵ݉ܤ for parent G-node of N. Thus selection bit
string to identify a subset of elements in a particular child
G-node and to identify the parent elements of a subset of
elements selected in a G-node is found. Finally, we define a
function GetSelectionBitString (J) to select elements in a G-
node contained in the query tree of a given twig pattern
query, which satisfy all the branching paths and predicate
conditions in the sub-tree. The selection bit string SBj for J
can be computed by performing bitwise AND operations
over all the selection bit strings SBm obtained from the
child nodes of J where J is a G-node in the query tree T.

A. Sub path and Main path Traversal Phase
 The main path denotes a path from the root node to a
leaf node which represents the target element of the query
and the sub path denotes branch paths excluding the main
path in the query tree. The mobile client enters query and
decryption key into the application. The query is then
modeled into a query tree. In the tree traversal phase, the

K. Preethi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2112-2116

www.ijcsit.com 2115

query tree is traversed in a depth-first manner; it selectively
downloads components of the relevant G-nodes into the
nodes in the query tree. Attribute values and texts involved
in the given predicates are decrypted using the decryption
key and downloaded into the relevant nodes. In the
Subpaths traversal phase, the mobile client performs a post-
order depth-first traversal starting from the highest
branching node in the query tree using the
GetSelectionBitString () function. In the sub path traversal
phase each sub path is explored from the leaf node. Thus,
the selection bit string for the branching node is calculated
from all the sub paths in a bottom-up manner using Pack
and Expand&Mask operators. Finally, the Main path
traversal phase propagates the selection bit string on the
branching node along the main path using Shrink&Mask
and Unpack operators. Finally, the mobile client retrieves
the required data which satisfies the given twig pattern
query and with the help of encryption technique

VI. CONCLUSION

 Twig pattern queries containing complex conditions are
popular and critical in XML query processing. In this paper,
we propose an efficient wireless XML streaming method
supporting twig pattern queries. We defined Lineage
Encoding scheme and relevant operators to efficiently
process twig pattern queries and for selective access of
XML elements as well as their attribute values and text. We
also propose symmetric encryption technique to encrypt the
attribute values and text contents of each element excluding
name and roll number element in the XML document which
ensures privacy and security in the mobile clients. Thus the
mobile client can retrieve the required data satisfying the
given twig pattern query and with the use of AES
algorithm, one mobile client cannot view other mobile
clients information.

ACKNOWLEDGMENT
 I would like to express my gratitude and sincere thanks
to my guide Professor Mr. S. Ganesh Kumar who is
providing constant encouragement and generous assistance.
I am heartily thankful to him for his constant support and
guidelines.

REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J.

Robie, and J. Simeon, “XML Path Language (XPath) 2.0,”
Technical Report W3C, 2002.

[2] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivastava,
and Y. Wu, “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 141-
152, Feb. 2002.

[3] S. Amer-Yahia, S. Cho, L.V.S. Lakshmanan, and D. Srivastava,
“Minimization of Tree Pattern Queries,” Proc. ACM SIGMOD Int’l
Conf. Management of Data Conf., pp. 497-508, 2001.

[4] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and C. Zhang, “Storing and Querying Ordered XML Using a
Relational Database System,” Proc. ACM SIGMOD Conf., pp. 204-
215, 2002.

[5] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M. Lohman,
“On Supporting Containment Queries in Relational Database
Management Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data Conf., pp. 425-436, 2001.

[6] N. Bruno, D. Srivastava, and N. Koudas, “Holistic Twig Joins:
Optimal XML Pattern Matching,” Proc. ACM SIGMOD Int’l Conf.
Management of Data Conf., pp. 310-321, 2002.

[7] H. Jiang, H. Lu, and W. Wang, “Efficient Processing of XML Twig
Queries with OR-Predicates,” Proc. ACM SIGMOD Int’l
Management of Data Conf., pp. 59-70, June 2004

[8] R. Kaushik, P. Bohannon, J.F. Naughton, and H.F. Korth,
“Covering Indexes for Branching Path Queries,” Proc. ACM
SIGMOD Int’l Management of Data Conf., pp. 133-144, June 2002.

[9] R. Kaushik, R. Krishnamurthy, J.F. Naughton, and R.
Ramakrishnan, “On the Integration of Structure Indexes and
Inverted Lists,” Proc. ACM SIGMOD Int’l Management of Data
Conf., June 2004.

[10] J.P. Park, C.-S. Park, and Y.D. Chung, “Attribute Summarization: A
Technique for Wireless XML Streaming,” Proc. Interaction
Sciences, pp.492-496,Dec.2009.

K. Preethi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2112-2116

www.ijcsit.com 2116

